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Abstract. An expression is derived for the spatially dependent Green function or response 
function in a solid occupying a half-space and having generally varying properties. The 
expression is valid in the same range as the W K B  approximation, namely for slowly varying 
properties. Some generalisation is indicated and the time-dependent Green function or 
the resolvent is obtained as a Fourier transform. 

1. Introduction 

An electric field penetrating into a semi-infinite solid interacts with the particles in 
the medium. An example of this situation is the excitonic polariton studied by Hopfield 
and Thomas (1963), Maradudin and Mills (1973), Balslev (1981) and Lagois (1981). 
The mathematical formulation of the problem leads to a set of differential equations 
inhomogeneous in the electric field, which are customarily solved by means of Green 
functions, resolvents, response functions, etc. The methods of solution are of interest 
in a broader range of problems as well. 

A Schrodinger equation for a semi-infinite medium with space-varying properties 
has been solved using the WKB (Wentzel-Kramers-Brillouin) approximation by Good- 
man (1971) who discussed the validity of his solution. Green functions in a 
homogeneous half space were obtained by Oliveros and Tilley (1982, 1983). In this 
paper we consider a half-space with spatially varying properties and propose an 
approximation for the Green function. Because of the connection of the method to 
the WKB solution of differential equations (Froman and Froman 1965, Jacobsson 
19661, we start by studing this problem first. 

2. A differential equation 

The differential equation for the half space x 3 0, 

[(d2/dx2)+q2(x)If(x) = 0 

with Im q ( x )  > 0, has the well known approximate WKB solution 

a being a constant. The error terms indicate that the solution is accurate when the 
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variation of q(x) is slow, i.e. in the so-called long wavelength limit. If (1) is the 
Schrodinger equation, then 

(3) 

M being the mass, E the energy and V ( x )  the potential. In this context equation (2) 
represents a semi-classical approximation, which arises from a series expansion of the 
exact, exponential solution of (l), namely 

q2  = 2M[E - V(X)]/fl2 

f (x)  = a  exp i J'Q+w d5 (4) 

where Q+ satisfies the nonlinear differential equation for Q(x): 

Q2(x)-q2(x)-idQ(x)/dx = O  

where Im Q+(x) > 0. WKB type solutions are obtained by regarding the third term in 
( 5 )  as small. Twice iterated solutions of ( 5 )  are 

Q * = I t q + ( i / 2 ) d l n q / d x + . .  . ( 6 )  

where Im Q - ( x )  < 0. To the written accuracy Q, leads to (2). 

3. Spatial Green function 

Surprisingly, no analogous expression seems to exist in the scientific literature for the 
Green function G(x, XI), defined for x, x ' s 0  by the equation: 

(7) 

and subject to some boundary conditions, e.g. the Dirichlet boundary condition: 
G(O', x ' )  = 0, or the Neumann boundary condition: aG(x, x')/ax = 0 as x -P 0'; G -+ 0 
as x or x '+  CO (Morse and Feshbach 1953, Blinder 1975). 

Equation (7) describes the behaviour of the system in the positive half-space x in 
which a unit force or source acts at a point x ' .  The effect of a distribution of sources 
can be obtained by superposition of solutions. We wish to show that the wKB-type 
Green function, subject to the same errors as in (2), is 

[(a'/& ') + q (X )]G (x, x ') = - 4 d  ( X  - x ') 

where max and min represent the greater and the lesser of the two arguments; U = 1 
for Dirichlet boundary conditions, U = -1 for Neumann boundary conditions and U 
takes some intermediate value for other boundary conditions. 

Proof. An exact solution of (7) is of the form 

where G 2  is a solution of the homogeneous equation for G, ensuring that the boundary 
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conditions are satisfied by G, 

s = sign(x - x’) (10) 

and Q, is one of the solutions of ( 5 ) .  In order that the first term in (9) shall match 
the inhomogeneous part of (7), aG(x, x’)/ax must exhibit a jump of -4.n as x crosses 
x ’  from below. Evaluating the derivative at x = x ’  f 0 we obtain 

(alax)Gl(x, x’) 

=s2.n(-1). (11) 

We have equated (1 1) with -27r for x = x’  + 0 and with 27r for x = x’ - 0, thus obtaining 
the desired - 4 ~  jump. We can solve for g, and arrive at 

At x = 0, s =; - , whence 

is appropriate to satisfy the boundary conditions there. In the WKB limit (equation 
(6)) one obtains the solution given in (8). Higher-order corrections are provided by 
Jacobson (1966). 

4. Time dependence 

To obtain the time-dependent Green function (Morse and Feshbach 1953, Blinder 
1975) satisfying 

(13) [ ( a z / a ~ z ) + q 2 ( ~ , a / a t ) ] G ( ~ ,  t ; ~ ‘ ,  t’) =-4rS(x -x‘)S(t-t’) 

we make one Fourier transformation (denoted by a horizontal bar) 
(13 

G(x, W ;  x’, t’) = eior G(x, I ;  x’, t’) dt I, 
which is the solution of 

. I  

[(a2/ax2)+q2(x, - i~ ) ]G(x ,  w ;  XI, t’) = - 4 ~ s ( x  -x’) elwt.  

Now clearly 

G(x, U ;  x’, t’) e-i’”“= G(x, x’; W )  

is independent of t’ and is in fact the solution of the purely spatial equation, (7), with 
the addition that in q 2  there now appears w as a parameter. Using for G(x, x‘; W )  

either the formal solution, given in (12), or the WKB approximation, appearing in (8), 
we transform back to obtain the formal solution 

m 

G ( x , t ; x f , t ‘ ) = L [  2.n -(13 dw exp[io(t’-t)]G(x,x’;w). (14) 
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Physical applications of our results to the reflectivity of a medium with spatial 
dispersion will be the subject of a later publication. 
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